首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
化学工业   9篇
金属工艺   1篇
能源动力   1篇
轻工业   6篇
一般工业技术   2篇
  2018年   2篇
  2014年   2篇
  2012年   1篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  1986年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Novel soy protein/polystyrene nanoblends with core‐shell structures were successfully prepared by introducing nano‐sized PS into soy protein through emulsion polymerization. The nanoblends showed core‐shell structures, with the core being of PS and the shell of sodium dodecane sulfonate and soy protein polypeptides, when investigated by electron microscopy. Nanoblends containing high levels of PS (>30%) exhibited characteristic infrared spectrum bands, X‐ray diffraction peak, and glass transition, since PS microsphere aggregated to form independent PS domains. Mechanical strength and water resistance were effectively improved by introducing PS. An effective structure‐performance relationship was thereby established to describe the nanoblends.

  相似文献   

2.
Cellulose nanocrystals (CNCs), a unique and promising natural material extracted from native cellulose, have attracted considerable attention owing to their physical properties and special surface chemistry. This review focuses on chemical conjugation strategies that can be used for preparation of fluorescent-molecule labeled CNCs and the development of biomaterials. Furthermore, their application in the detection of metal ions and future development prospects are discussed. We hope to provide a clear view of the strategies for surface fluorescent modification of CNCs and their application in detection of metal ions.  相似文献   
3.
Poly(ε‐caprolactone) (PCL) was grafted to the surface of starch nanocrystals (StN) via microwave‐assisted ROP. The resultant nanoparticles were then incorporated into a poly(lactic acid) matrix to produce fully‐biodegradable nanocomposites with good mechanical properties. A loading level of 5 wt.‐% StN‐g‐PCL resulted in simultaneous enhancements of strength and elongation. The StN‐g‐PCL self‐aggregated as rubbery microparticles to enhance the elongation by ca. 10‐fold over that of neat PLA. Meanwhile, the grafted PCL chains were miscible with PLA and formed a stress‐transferring interface to the StN, providing a reinforcing function.

  相似文献   

4.
The self‐assembled rigid supramolecular nanoplatelets (SN) from Pluronic polymers with various lengths of polyethylene oxide (PEO) and β‐cyclodextrin have reinforced the soy protein isolate (SPI)‐based biodegradable plastics in terms of strength and modulus but at the expense of elongation. Meanwhile, the water resistance, which limited the application of the SPI plastics, was also enhanced. The structure and properties of nanocomposites were characterized by X‐ray diffraction, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile test, and water uptake test. The low loading of nanoplatelets was able to disperse into SPI matrix homogeneously, which resulted in reinforcement in nanocomposites. With an increase of nanoplatelets loading, the repulsion between nanoplatelets and SPI matrix occurred, accompanying with the formation of rectangle objects, resulted in a decrease of mechanical performance of the nanocomposites. The nanoplatelets with longest free PEO segments produced highest strength with least loss of elongation by virtue of enhanced association with SPI matrix mediated by PEO segments. Meanwhile, the nanoplatelets with moderate length of free PEO segments showed optimal water resistance. Herein, the reinforcing function of a supramolecular nanoplatelet, similar to the structure of layered silicate, was verified. © 2007 Government of Canada. Exclusive worldwide publication rights in the article have been transferred to Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
5.
6.
Conductive papers made from graphene and its derivatives are important for the development of electronic devices; however, elastomerbased matrices usually make it difficult for the conductive sheets to form continuous conductive networks. In this work, we used tunicate-derived cellulose nanocrystals(TCNC) instead of traditional elastomers as the matrix for polydopamine(PDA)-coated and reduced graphene oxide(GO) to prepare conductive paper, which, at a low concentration, were better for the formation of conductive networks from conductive sheets. It was found that the Young's modulus of the conductive paper produced via this strategy reached as high as 7 GPa. Meanwhile, owing to the partial reduction of GO during the polymerization of dopamine, the conductivity of the conductive paper reached as high as 1.3×10-5 S/cm when the PDA-coated GO content was 1 wt%, which was much higher than the conductivity of pure GO(~4.60×10-8 S/cm). This work provides a new strategy for preparing environmentally friendly conductive papers with good mechanical properties and low conductive filler content, which may be used to produce high-performance, low-cost electronic devices.  相似文献   
7.
This paper estimates the availability of agricultural crop residue feedstocks in Canada for cellulosic ethanol production. Canada's major field crops generate 100.6 million dry mega grams (Mg) of crops per year while non-forage crops produce 67 million dry Mg, leaving abundant agricultural residues for use as second generation feedstock for cellulosic ethanol production. This study used crop production and livestock data from Statistics Canada for a 10-year period (2001–2010), as well as tillage data from Statistics Canada census years 2001 and 2006, to estimate crop residue availability by province and soil zone. Total residue yield from crops is calculated by incorporating straw to grain ratios. Total agricultural residues available for ethanol production are computed by deducting soil conservation and livestock uses. An average of 48 million dry Mg of agricultural residues is available per year, with a minimum of 24.5 million dry Mg in drought year 2002. This implies an average yearly potential ethanol production of 13 billion litres from crop residues over the 2001–2010 period, with a minimum of 6.6 billion litres in 2002. Ontario, Manitoba, Saskatchewan, and Quebec have enough agricultural residue supply to set up ethanol plants using agricultural crop residues as primary lignocellulosic feedstocks. There is great variability in agricultural residue production between the provinces and by soil zone. Understanding variability in feedstock supply is important for the economics and operational planning of a cellulosic ethanol biorefinery. Factors such as residue yield per hectare and soil zone will influence cellulosic ethanol plant establishment in order to exploit the abundance of lignocellulosic biomass for an ethanol plant.  相似文献   
8.
MWNTs of various sizes were compounded into SPI matrix by solution mixing and then compression‐molded into nanocomposite sheets, which were characterized by XRD, SEM, TEM, and tensile and water uptake testing. The resultant nanocomposites showed improved mechanical performance and higher water resistance depending on MWNT size and content. This work details a strategy to achieve improved performance, especially in terms of mechanical properties, using MWNTs of various sizes to regulate the entanglement and penetration between SPI and MWNTs.

  相似文献   

9.
New applications of both pea hull fiber (PHF) and PHF‐derived nanowhiskers (PHFNW), isolated from PHF by acid‐hydrolysis, as fillers in starch‐based biocomposite films were explored in this work. Two series of films were prepared by blending pea starch (PS), respectively, with PHF and PHFNW. The effects of PHF and PHFNW as filler on the structure and properties of the composite films were comparatively investigated by observation of morphology and analysis of thermal, optical, and mechanical properties. The results revealed that the PS/PHFNW nanocomposite films exhibited improved physical properties over both the neat PS film and PS/PHF microcomposite films. The light transmittance at 800 nm, tensile strength, elongation at break, and Young's modulus were 56.0%, 4.1 MPa (Megapascal), 30.1%, 40.3 MPa, respectively, for the PS film without filler; 58.0%, 7.6 MPa, 41.8%, and 415.2 MPa for the PS/PHFNW film containing 10 wt% filler; and 37.2%, 2.8 MPa, 17.0%, and 29.8 MPa for the PS/PHF film containing 10 wt% filler. The improvement to the properties of PS/PHFNW nanocomposite films may be attributed to the nanometer size effect of PHFNW, which resulted in the homogeneous dispersion of PHFNW within the PS, and the strong interactions between the matrix and the nanoscale filler. POLYM. ENG. SCI., 2009. Published by the Society of Plastics Engineers  相似文献   
10.
Based on a “graft from” strategy, the surface of starch nanocrystals (StN) were functionalized by grafting with polycaprolactone (PCL) chains via microwave assisted ring‐opening polymerization (ROP). The modified natural nanoparticles were then compounded into a PCL‐based waterborne polyurethane as matrix. The structural and mechanical properties of the WPU/StN‐g‐PCL nanocomposites were characterized by XRD, FTIR, SEM, DSC, DMA, and tensile testing. It was interesting to note that a loading‐level of 5 wt % StN‐g‐PCL resulted in a simultaneous enhancement of tensile strength and elongation at break, both of which were higher than those of neat WPU. This enhancement was attributed to the uniform dispersion of StN‐g‐PCL because of its nano‐scale size, the increased entanglements mediated with grafted PCL chains, and the reinforcing function of rigid StN. Increasing the StN‐g‐PCL content however caused the StN‐g‐PCL to self‐aggregate as crystalline domains, which impeded improvement in tensile strength and elongation at break, but significantly enhanced Young's modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号